博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
明安图(卡特兰)数(及其扩展 折线法)
阅读量:4664 次
发布时间:2019-06-09

本文共 3010 字,大约阅读时间需要 10 分钟。

转载一个不知出处的博客总结

(扩展)

 

卡塔兰数是中一个常出现在各种计数问题中出现的。由以的数学家 (–)命名。

卡塔兰数的一般项公式为 C_n = \frac{1}{n+1}{2n \choose n} = \frac{(2n)!}{(n+1)!n!}                      另类递归式:  h(n)=((4*n-2)/(n+1))*h(n-1);

前几项为 (中的数列): 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, ...

性质

Cn的另一个表达形式为C_n = {2n\choose n} - {2n\choose n-1} \quad\mbox{ for }n\ge 1 所以,Cn是一个;这一点在先前的通项公式中并不显而易见。这个表达形式也是André对前一公式证明的基础。(见下文的。)

卡塔兰数满足以下

C_0 = 1 \quad \mbox{and} \quad C_{n+1}=\sum_{i=0}^{n}C_i\,C_{n-i}\quad\mbox{for }n\ge 0.

它也满足

C_0 = 1 \quad \mbox{and} \quad C_{n+1}=\frac{2(2n+1)}{n+2}C_n,

这提供了一个更快速的方法来计算卡塔兰数。

卡塔兰数的渐近增长为

C_n \sim \frac{4^n}{n^{3/2}\sqrt{\pi}}

它的含义是左式除以右式的商1当n → ∞。(这可以用n!的来证明。)

所有的奇卡塔兰数Cn都满足n = 2k − 1。所有其他的卡塔兰数都是偶数。

应用

中有非常多.的组合结构可以用卡塔兰数来计数。在Richard P. Stanley的Enumerative Combinatorics: Volume 2一书的习题中包括了66个相异的可由卡塔兰数表达的组合结构。以下用Cn=3和Cn=4举若干例:

  • Cn表示长度2n的dyck word的个数。Dyck word是一个有n个X和n个Y组成的字串,且所有的部分字串皆满足X的个数大于等于Y的个数。以下为长度为6的dyck words:
XXXYYY XYXXYY XYXYXY XXYYXY XXYXYY
  • 将上例的X换成左括号,Y换成右括号,Cn表示所有包含n组括号的合法运算式的个数:
((())) ()(()) ()()() (())() (()())
  • Cn表示有n+1个叶子的的个数。

                                                                       

  • Cn表示所有不同构的含n个分枝结点的满的个数。(一个有根二叉树是满的当且仅当每个结点都有两个子树或没有子树。)

证明:

令1表示进栈,0表示出栈,则可转化为求一个2n位、含n个1、n个0的二进制数,满足从左往右扫描到任意一位时,经过的0数不多于1数。显然含n个1、n个0的2n位二进制数共有{2n \choose n}个,下面考虑不满足要求的数目.

考虑一个含n个1、n个0的2n位二进制数,扫描到第2m+1位上时有m+1个0和m个1(容易证明一定存在这样的情况),则后面的0-1排列中必有n-m个1和n-m-1个0。将2m+2及其以后的部分0变成1、1变成0,则对应一个n+1个0和n-1个1的二进制数。反之亦然(相似的思路证明两者一一对应)。

从而C_n = {2n \choose n} - {2n \choose n + 1} = \frac{1}{n+1}{2n \choose n}。证毕。

  • Cn表示所有在n × n格点中不越过对角线的单调路径的个数。一个单调路径从格点左下角出发,在格点右上角结束,每一步均为向上或向右。计算这种路径的个数等价于计算Dyck word的个数: X代表“向右”,Y代表“向上”。下图为n = 4的情况:
  •                                                                         
  • Cn表示通过连结顶点而将n + 2边的分成的方法个数。下图中为n = 4的情况:

                                                                                 

  • Cn表示对{1, ..., n}依序进出的个数。一个置换w是依序进出栈的当S(w) = (1, ..., n), 其中S(w)递归定义如下:令w = unv,其中nw的最大元素,uv为更短的数列;再令S(w) =S(u)S(v)n,其中S为所有含一个元素的数列的单位元。
  • Cn表示集合{1, ..., n}的的个数. 那么, Cn 永远不大于第n项. Cn也表示集合{1, ..., 2n}的的个数,其中每个段落的长度为2。综合这两个结论,可以用证明 that all of the free s of degree more than 2 of the  are zero. This law is important in  theory and the theory of .
  • Cn表示用n个长方形填充一个高度为n的阶梯状图形的方法个数。下图为 n = 4的情况:

                                                                                          

百度百科资料:
简介
  中文:卡特兰数
  Catalan数是组合数学中一个常出现在各种计数问题中出现的数列。由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名。
  原理:
  令h(0)=1,h(1)=1,catalan数满足递归式:
  h(n)= h(0)*h(n-1) + h(1)*h(n-2) +  + h(n-1)h(0) (其中n>=2)
  该递推关系的解为:
  h(n)=C(2n,n)/(n + 1) (n=1,2,3,)
       另类递归式:  h(n)=((4*n-2)/(n+1))*h(n-1);
  
  前几项为 (OEIS中的数列A000108): 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 
应用
  我总结了一下,最典型的四类应用:(实质上却都一样,无非是递归等式的应用,就看你能不能分解问题写出递归式了)
1.括号化问题。
  矩阵链乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n)种)
2.出栈次序问题。
  一个栈(无穷大)的进栈序列为1,2,3,..n,有多少个不同的出栈序列?
  类似:
  (1)有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)
  (2)在圆上选择2n个点,将这些点成对连接起来,使得所得到的n条线段不相交的方法数。
3.将多边行划分为三角形问题。
  将一个凸多边形区域分成三角形区域的方法数?
  类似:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她
  从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?
  类似:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?
4.给顶节点组成二叉树的问题。
  给定N个节点,能构成多少种形状不同的二叉树?
  (一定是二叉树!
  先去一个点作为顶点,然后左边依次可以取0至N-1个相对应的,右边是N-1到0个,两两配对相乘,就是h(0)*h(n-1) + h(2)*h(n-2) +  + h(n-1)h(0)=h(n))
  (能构成h(N)个)

转载于:https://www.cnblogs.com/lsyyy/p/11536606.html

你可能感兴趣的文章
利用Android-FingerprintManager类实现指纹识别
查看>>
flask---注册-验证简单逻辑api接口
查看>>
[Python] Create a minimal website in Python using the Flask Microframework
查看>>
【PHP 】 伪静态 - 3. 伪静态的基本使用
查看>>
LA 4636 (贪心) Cubist Artwok
查看>>
项目经理怎样获得领导和客户的认可
查看>>
多线程优化 锁升级
查看>>
Linux文件系统
查看>>
安卓APP测试验证点总结
查看>>
idea启动崩溃问题
查看>>
python3 异常处理
查看>>
hdu2102(广搜)
查看>>
java.security.NoSuchAlgorithmException: SHA1PRNG SecureRandom not available
查看>>
[SinGuLaRiTy] 2017 百度之星程序设计大赛 复赛
查看>>
hard-negative mining 及伪代码实现
查看>>
JS框架_(Laydate.js)简单实现日期日历
查看>>
19. Remove Nth Node From End of List
查看>>
Struts2(三):新建Struts2工程
查看>>
数据库调优过程(一):SqlServer批量复制(bcp)[C#SqlBulkCopy]性能极低问题
查看>>
AS中jar包和aar包区别及导入导出
查看>>